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Techniques to control the particle distribution may significantly improve the per-
formances of liquid/liquid mixing processes in many industrial applications. Cur-
rently there are no mathematical tools available that can be used to control the
transient processes in stirred liquid/liquid systems in CFD simulations. This pa-
per addresses the simulation of dispersions using population balance equations
and describes the coupling of the flow solver FASTEST 3D, that simulates the
dispersion in stirred tanks, with MATLAB. This coupling makes a vast variety of
control routines from the MATLAB Control Toolbox directly available in the stirrer
simulations. Also an exemplary control design, using an identified model and a
linear quadratic regulator is presented and discussed.
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1 Introduction

Stirred liquid/liquid systems can be found in numerous technical processes, especially
in chemical, oil and gas, pharmaceutical and food industries. In particular the mixing of
immiscible fluids, that lead to dispersions of fluids in a continuous phase, are of major
importance. The properties of these dispersions are essential for the technical process,
e.g. chemical reactions. Hence, it is desirable to be able to accomplish a requested
particle size distribution (PSD).
Since experimental investigations are very costly and time-consuming, the advantages
of computational fluid dynamics (CFD) should be utilised also for mixing processes.
CFD has already become the standard tool for predicting the flow in turbulent fields
and it‘s application to stirred tanks shows good results [7, 19]. For the simulation of
the particle size distribution, in a mixing-process several numerical techniques have
been developed, verified and partially implemented into CFD-software packages, c.f.
[2, 14, 20].
The control of the PSD has been addressed during the last two decades. In particular
for experimental setups of polymerisation reactors there exists a vast record of investi-
gations, c.f [22] and the references therein. In the most cases the PSD is influenced by
changing parameters that immediately act on the particle size distribution like feed rate
and temperature.
For the control of the PSD in the reactor by influencing the flow field, however, no math-
ematical methods are available. As a first step, the investigations described in [17]
showed that such a joint system of flow and population balance equations (PBE) has
the potential to allow control.
We present a coupling of the combined flow/PBE solver to MATLAB which makes the
problem available to the methods implemented in the MATLAB Control Toolbox. This
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includes heuristic feedback control like PID controllers, optimal control on the base of
identified models, and model reduction techniques.
The basis for the CFD in a stirred tank is the in-house flow solver FASTEST 3D [4],
which is based on a fully conservative finite volume method (FVM) for the solution of the
incompressible Navier-Stokes equations on a non-staggered, cell-centered, blockstruc-
tured, boundary-fitted grid.
To compute the particle size distribution, the flowfield of the mixture, treated as sin-
gle fluid, is solved and used as an input for the suitably modelled population balance
equation.
The quantities of the solver are then transferred to MATLAB where a control algorithm
computes the inputs for the solver for the next time step.
The work presented is funded by DFG and is part of a joint project dedicated to the
control of particle size distributions in stirred liquid/liquid dispersions. At every stage,
the numerical results are compared with experimental findings, which are supplied by
our partners from the working group of M. Kraume at TU Berlin, Department of Process
Engineering.

2 The Model

To reduce the overall complexity of the numerical solution of the flow system, the mix-
ture is treated as a single fluid and the dispersion is defined via a separate population
balance equation. Thereto one calls on the basic assumptions:

1. The volume fraction φ of the dispersed phase is small, i.e. φ ∼ 0.1. This means
that the mixture is mainly made up by the socalled continuous phase, whereas the
second phase occupies not more than 10% of the overall volume.

2. The physical properties density and viscosity of the fluids are similar, such that
e.g. buoyancy and inertia effects can be neglected.

And concludes that:

3. The formation of the dispersed phase is defined by but does not influence the flow
field. This also includes that the drops of the dispersed phase simply move with
the continuous phase.

For the investigated setup of water and toluene with φ = 0.1 these assumptions are
acceptable. Thus we model the system by incompressible Reynolds averaged Navier-
Stokes equations (RANS)

∂ρv

∂t
+ div(ρvv)− div T ∗ − ρf = 0 (1a)

div v = 0, (1b)

to determine the flow of the mixture and track the dispersion via the population balance
equation

∂n

∂t
+ div(vn) + div(Γt∇n)− S = 0. (1c)
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Here v denotes the mean velocity and ρ is the density of the mixture, T ∗ is the turbulent
stress tensor and f denotes a volume force acting on the flow. The dispersion is de-
scribed by the number density function n and Γt denotes a turbulent diffusion coefficient,
c.f [17]. The source terms, modelling the evolution of the dispersion, are pooled in the
function S.
The above equations are posed within the spatial domain occupied by the stirrer for
time t varying in a finite time interval (0.T ] and are to be completed by suitable initial and
boundary conditions. The number density function and hence equation (1c) additionally
depend on internal variables. In this investigation we assume that the dispersion is
defined only by the diameter of the drops, i.e. the diameter d is the only internal variable.
Note that the PBE is influenced by the flow field, since the velocity v appears in the
advection term and also the sources S depend on variables extracted from the flow
field, while the reverse coupling is not considered in this model.
For the numerical simulation the turbulent stresses are approximated using the k-ε
model and the number density function is approximated by a set of its first moments.

2.1 Numerical Simulation of the Flow in Stirred Tanks

In order to ensure the comparability of simulation and measurements, the numerical
setup is modelled after the experimental arrangement, c.f. [5]. The matter of interest
is a Rushton turbine (see Figure 1-(a)) with water as continuous phase and toluene
as dispersed phase, whereas we confine the following treatise to the simulation of the
continuous phase. The rotational speed ω is used as a parameter for the active control
of the drop size distribution. Since the flow is expected to be turbulent, the simulations
are performed with the Reynolds averaged Navier-Stokes (RANS) equations. Therefore
the standard k-ε-model with wallfunction is applied. For the correction of velocity and
pressure the SIMPLE algorithm is implemented in the used flow solver FASTEST 3D
and the resulting linear system is calculated with an iterative ILU solver.

(a) (b)

Figure 1: (a) Stirrer geometry created with grid generation tool and (b) clicking mesh technique
for grid movement

For the spatial discretisation of the mixer the algebraic grid-generation-tool GRIDGEN
is used, which was especially designed for the grid generation of various stirrer types by
the group of M. Schäfer at TU Darmstadt. GRIDGEN has the advantage of a short com-
putation time and results in a very well adapted, hexaedron, blockstructured, boundary
fitted grid, which fulfills all requirements.
A stirred vessel involves a time dependent flow geometry and can be considered as
a rotor-stator configuration. The fluid structure interaction caused by the existence of
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rotating and non-rotating parts requires a special approach. Clicking grids, Sliding grids
and Deforming grids are three general methods for realizing the time dependent geom-
etry changes of rotor-stator configurations. In FASTEST 3D the clicking grid method is
implemented, which is based on a partitioning of the whole fluid region into an inner
rotating and an outer stationary region.
For realizing the rotation of the stirrer, the inner region rotates and ”clicks” into a new
position for every time step. The next position of the inner region is defined such that
the grid lines are exactly connected to a new partner, so the boundary grid cells find
a new neighbour in radial direction. The main advantage is that no grid deformation is
needed and for every time step the finite volume method can be applied as usual. On
the other hand the number of possible rotation positions is restricted by the number of
grid segments in azimuthal direction. The time step size depends on the grid and the
given rotational speed, because during one time step the next clicking position has to
be reached. As there are restrictions for the time step size with respect to the simulation
of turbulent flow, the rotational speed is restricted as well.
Considering that the fluid elements on the clicking interface change their positions and
get new neighbour cells in every time step, a data transfer has to be performed in every
time step. Velocities and mass fluxes are shifted to their original place. Additionally for
the data transfer at the clicking interface a coordinate transformation according to the
different frames of reference has to be realised.

2.2 Approximate Solution of the PBE Using DQMOM

Instead of solving the PBE (1c) directly, one can, as firstly proposed in [9], compute a
certain number of moments to approximately reconstruct the density function n. Follow-
ing the investigations by Marchisio [13] we solve the transport equations for N weights
wα and weighted abscissae ζα = wαξα

∂wα
∂t

+ div(vwα)− div(Γt∇wα) = aα (2a)

∂ζα
∂t

+ div(vζα)− div(Γt∇ζα) = bα, (2b)

where the source terms aα and bα are determined by the linear equation system

(1− k)
N∑
α=1

ξkαaα + k

N∑
α=1

ξk−1
α bα = r

(N)
k , for k = 0, . . . , 2N − 1 (2c)

with the right hand side

r
(N)
k :=

∫ ∞
−∞

dks(d)dd+ k(k − 1)
N∑
α=1

ξk−2
α wαΓt‖∇ξα‖2

2.

consisting of the moment transformed source terms and a diffusive correction term. The
turbulent diffusivity is computed via Γt = 0.09 · k2

ε
. The quadrature formula, the weights

and abscissae are belonging to, is defined such that the first N moments of n can be
computed exactly via

mk :=

∫ ∞
0

dkn(t, x; d)dd =
N∑
α=1

wαξ
k
α for k = 0, 1, . . . , N − 1
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where the order of approximation N can be chosen arbitrarily high.
Formally, system (2a) can be solved for wα and ξα, α = 1, . . . , N if the coefficient matrix
in (2c) is regular, which is the case for distinct abscissae ξα and, if needed, can be
assured by regularisations as described e.g. in [12].

2.3 Discretisation of the Transport Equations in Space and Time

For the spatial discretisation the same grid is used as in the FVM simulation in the flow
solver, i.e. the flow variables like v, ε and Γt are directly available at the considered
discrete points. For the selected segments of the cylindrical stirrer domain, c.f. Figure
5, that do not include the origin, parameterizing the grid in cylindrical coordinates gives
a uniform distribution of the cell nodes in each dimension.
To illustrate the method we consider (2a-b) as special cases of equations

∂ϕ

∂t
+ div(vφ)− div(Γ∇ϕ) = f(φ) in (0, T ]× Ω, (3)

ϕ
∣∣
t=0

= ϕ0 and ϕ
∣∣
∂Ω

= g,

that determine a scalar function ϕ for a given right-hand side f and parameters v and Γ.
Using the formulation of the differentiation operators div and∇ in cylindrical coordinates,
equation (3) is discretised by means of central finite differences for the convection and
forward-backward differences for the diffusion term. Thus we obtain the linear system
of ordinary differential equations

ϕ̇h + Aϕh = fh(ϕh) in (0, T ] and ϕh
∣∣
t=0

= ϕh,0 (4)

where matrix A contains the discretised differential operators and the boundary condi-
tion g and the vectors ϕh and fh the approximate discrete values of ϕ and f , respectively.
For the time numerical integration of the spatially discretised convection diffusion equa-
tion (4) one can use common numerical schemes for initial value problems.
In our concrete case we will use a combination of implicit and explicit schemes, as for
example suggested in [6]. In particular the treatment of the right hand side will be explicit
since the inhomogeneity is highly nonlinear and not directly available but defined via an
equation system, c.f. Section 2.2.
Thus using, for the sake of illustration, explicit Euler for the fh(ϕh) and implicit Euler for
Ahϕh the update of the solution from time level φkh to φk+1

h with a stepsize τ k is obtained
by the solution of

[I + τ kA]ϕk+1
h = ϕkh + τ kfh(ϕ

k
h). (5)

If the trapezoid rule is used for the linear part, one has to solve

[I +
τ k

2
A]ϕk+1

h = [I − τ k

2
A]ϕkh + τ kfh(ϕ

k
h).

Analogue formulations can be derived for all sorts of one-step methods. Since the time
step is varying by default, the application of multistep methods is not taken into account.
To obtain an approximate solution for the weights and abscissae, equations (2a-b) are
brought into the fully discretised form (5) giving the system

[I + τ kA]wk+1
α,h = wkα,h + τ kaα,h(ξ

k
1,h, . . . , ξ

k
N,h)

[I + τ kA]wk+1
α,h ξ

k+1
α,h = wkα,hξ

k
α,h + τ kbα,h(ξ

k
1,h, . . . , ξ

k
N,h),
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α = 1, . . . , N , that updates the discretised weights and weighted abscissae. The right
hand sides aα,h and bα,h, α = 1, . . . , N are vectors containing the values of aα or bα
at every point of the discretisation. They are obtained by solving the 2N × 2N linear
equation system defined by (2c) and the discrete abscissae and flow variables of the
previous time step at every node of the discretisation.

2.4 Modelling of the Source Terms

In liquid/liquid dispersions the dominating phenomena influencing the drop size distribu-
tion are breakage and coalescence, c.f. [5]. Thus the source term in the PBE (1c) takes
the form

S = Sbreak −Dbreak + Scoal −Dcoal.

Since the moment transform is a linear operation we obtain for the transformed source
terms

Sk = Sbreak
k −Dbreak

k + Scoal
k −Dcoal

k

with e.g.

Sbreak
k (x, t) =

∫ ∞
0

ξkSbreak(ξ;x, t)dξ.

Again, the transformed quantities do not depend on the internal coordinate ξ but still
on space and time. The latter connection can be both explicit and implicit, for example
through the variables of the flowfield like the dissipation rate ε. However, for the sake of
a clear notation the dependency on time and space of the involved functions is skipped.
Taking the drop diameter d as the internal coordinate one can derive general mathe-
matical formulations for the source terms. A detailed description of the derivation and
interpretation of the source terms is provided in [17].
The breakage birth term can be written as

Sbreak(d) =

∫ dmax

d

m(d′)β(d, d′)g(d′)n(d′)dd′

where n is the number density function, g is the drop breakage rate, β is the daughter
size distribution and m denotes the number of daughter drops arising from the breakage
of one mother drop. In case of binary breakage one has m = 2.
The associated breakage death term is

Dbreak(d) = g(d)n(d).

The source due to coalescence is formulated as

Scoal(d) =

∫ d

0

F (d′, d′′)n(d′)n(d′′)dd′

with d′′ = d−d′ and F denoting the drop coalescence rate for two coalescing drops. The
same function is used to model the death term due to coalescence to get

Dcoal(d) = n(d)

∫ dmax−d

0

F (d, d)n(d′)dd′.
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For the numerical treatment all integrals containing the drop size distribution n are ap-
proximated by quadrature using the weights wα and abscissae ξα. Also we introduce the
cutting function

χ(t, s) =

{
0 if t ≤ s

1 if t > s
(6)

to simplify the mathematical expressions.
Thus, for the breakage source term we get

Sbreak
k =

∫ dmax

0

dk
∫ dmax

d

m(d′)β(d, d′)g(d′)n(d′)dd′dd

=

∫ dmax

0

dk
∫ dmax

0

χ(d′, d)m(d′)β(d, d′)g(d′)n(d′)dd′dd

≈
∫ dmax

0

dk
[ N∑
α=1

χ(ξα, d)wαm(ξα)β(d, ξα)g(ξα)
]
dd

≈
N∑
α=1

wαm(ξα)g(ξα)

∫ dmax

0

χ(ξα, d)dkβ(d, ξα)dd.

Given a specific model for the involved functions it remains to evaluate the integrals
bk,α :=

∫ dmax

0
χ(d, ξα)dkβ(d, ξα)dd.

Analogously we obtain for the connected sink term

Dbreak
k ≈

N∑
α=1

wαξ
k
αg(ξα).

Using again the cutting function (6) and the relation d′′ = d− d′ we derive for the coales-
cence source term

Scoal
k (d) =

∫ dmax

0

dk
∫ dmax

0

χ(d, d′)F (d′, d− d′)n(d′)n(d− d′)dd′dd

≈
∫ dmax

0

dk
[ N∑
α=1

χ(d, ξα)wαF (ξα, d− ξα)n(d− ξα)
]
dd

≈
N∑
α=1

wα

∫ dmax

0

χ(d, ξα)dkF (ξα, d− ξα)
N∑
γ=1

wγδ(d− ξα − ξγ)dd

≈
N∑
α=1

N∑
γ=1

χ(dmax, ξα + ξγ)wαwγ(ξα + ξγ)
kF (ξα, ξγ),

Note that the cutting function χ has been adapted to restrict the sum ξα+ξγ to the feasible
range. The restriction used in the derivation cancels out, since χ(ξα + ξγ, ξα) ≡ 1.
Similarly the moment approximation of the corresponding death term is derived:

Dcoal
k (d) =

∫ dmax

0

dkn(d)

∫ dmax

0

χ(d′, d− dmax)F (d, d′)n(d′)dd′dd

≈
N∑
α=1

N∑
γ=1

χ(ξα, dmax − ξγ)wαwγξkγF (ξγ, ξα).

Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

633



Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

Besides the approaches considered and described in this work there exist a wide range
of models for the breakage and coalescence phenomena in liquid/liquid dispersions, we
refer to [5, 17] for references and a detailed discussion of the most common models.
The most widely used model is the one proposed by Coulaloglou and Tavlarides [3].
Here, as in many other common models breakage is assumed to happen due to col-
lisions of droplets and eddies of the flow field. In particular this models assumes that
breakage takes place if the kinetic energy of the eddy is larger than the surface energy
of the droplet. Hence, the breakage rate is modelled by

g(d) = c1,b
ε

1
3

(1 + φ)d
2
3

exp
(−c2,b

s(1 + φ)2

ρε
2
3d

5
3

)
.

The constants c1,b, c2,b are free parameters, ε, φ, s and ρ denote the turbulent dissipation,
disperse phase rate, interfacial tension and density, respectively.
The associated coalescence rate by Coulaloglou and Tavlarides [3] is

F (d′, d′′) =
c1,cε

1
3

(1 + φ)
(d′ + d′′)2(d′

2
3 + d′′

2
3 )

1
2 exp

( −c2,cµρε

s2(1 + φ)3

( d′d′′

d′ + d′′
)4
)
.

Besides others, this model contains two free parameter c1,c, c2,c and the dynamic viscos-
ity µ of the continuous phase. The free parameters can be used to fit the model to the
given setup. For this investigation the values, listed in Table 1, were taken from [5].

c1,b 6.14 · 10−4

c2,b 5.7 · 10−2

c1,c 1.5 · 10−4

c2,c 2.56 · 1012m−2

Table 1: Values of the model parameters

It remains to quantify the breakup. In this model we assume that eventually a drop
breaks up into two daughter drops of random but normally distributed size with a max-
imum likelihood of forming to equal sized drops. Thus we take m(d) = 2 and, adapting
the model by Coulaloglou and Tavlarides [3] to the drop diameter and defining the stan-
dard deviation σ := πd3/36,

β(d, d′) =
1

σ
√

2π
exp

(
−

π2

36
(1

2
d′ − d)2

2σ2

)
to describe the probability that the breakup of a drop of size d′ leads to a drop of size d.

2.5 Initial and Boundary Conditions

The abscissae and weights of the quadrature method can be derived from the moments
by means of the PD-algorithm, see e.g. [15]. If the distribution is known the computation
of the moments is straight forward. Hence, a general approach is to initialize the distri-
bution either arbitrarily for general investigations [13, 24] or problem-specific [17] using
measured values if a certain setup is simulated. Another approach is to use arbitrary
initial values for the weights and abscissae and to hope for a convergence to meaningful
values after some simulation time by physical convection and diffusion [18].

Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

634



Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

The handling of boundary conditions is not discussed by the authors mentioned above.
The simulations described in [17] use a space-independent formulation of the PBE. For
their investigations the authors of [20] propose Dirichlet conditions at the inlet and zero
gradients elsewhere.
For our investigation, where only a subdomain of the fluid phase is considered, we will
define initial and Dirichlet boundary values on the base of measured and computed
quantities.
In particular we will use the density function

nb(ξ) :=
m0

B(p, q)

ξp−1(ξmax − ξ)q−1

(ξmax)p+q−1
, (7)

with B(p, q) =
∫ 1

0
sp−1(1 − s)q−1ds and problem specific chosen parameters m0, p and

q. Function (7) is the density function of a nonstandard Beta-distribution on [0, ξmax]
multiplied with m0 and comes with the known expressions for the moments (c.f. [10])

mr = m0ξ
r
max

p[r]

(p+ q)[r]
, for r = 1, 2, . . . (8)

where y[r] = y(y + 1) · · · (y + r − 1) is the ascending factorial.
To adjust the distribution to the given setup we formulate it for ξ = d and impose the
three requirements

a.)
m3

m2

= d32, b.)
m2

m0

− m2
1

m2
0

= σ2 and c.) m3 =
6

π
φ. (9)

to obtain three nonlinear equations for the three parameters m0, p and q.
Conditions (9a) and (9b) are independent of m0 and demand that the distribution de-
fined via (7) matches a given Sauter diameter and standard deviation, respectively. The
corresponding equations read:

d32 =
m3

m2

= dmax
p[3]

p[2]

(p+ q)[2]

(p+ q)[3]
= dmax

p+ 2

p+ q + 2
(10a)

and

σ2
m =

m2

m0

− m2
1

m2
0

= d2
max

qp

(p+ q)2(p+ q + 1)
(10b)

Equation (9c) bases on the assumption that the drops are spherical, i.e. that for the vol-
ume of the drops holds V = d3π/6, and ensures that the distribution fits the predefined
volume fraction φ of the dispersed and continuous phase. In fact one has

φ =

∫ dmax

0

V (d)nb(d)dd =

∫ dmax

0

π

6
d3nb(d)dd =

π

6
m3

Knowing p and q the third constraint gives

m0 =
6φ

πd3
max

(p+ q)(p+ q + 1)(p+ q + 2)

p(p+ 1)(p+ 2)
(10c)
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The roots of (10a-b) with the parameters d32 and σ2 can be obtained by means of com-
puter algebra tools. However, one still has to pick out the feasible solutions, i.e. p, q > 0
in general and p, q ≥ 1 in the case of decaying density towards the margins. If there
are several feasible solutions one can use the following decision rules to determine the
most appropriate choice:

1. p ≈ q gives a symmetric distribution

2. p� q gives high density values in the upper range of d

3. p� q gives high density values in the lower range of d

4. p or q ≈ 1 gives a high gradient of the density at the corresponding borders

5. p, q � 1 means a smooth transition towards the borders (bell-shape curve)

In this survey the roots of (10a-b) computed numerically for given d32 and σ2
m. A fea-

sible solutions is determined by picking out a pair (<(p),<(q)) with <(p),<(q) > 1 and
|<(p)/=(p)|, |<(q)/=(q)| > 108.
This procedure is tested against measured data by [5] with satisfactory results depicted
in Figure 2. The Beta-distribution is preferable since it can be adjusted to the interval of
interest, in contrast to a normal distribution that is defined on the whole real axis.
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(a)
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32
,σ)
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(b)

Figure 2: Comparison of the cumulative density distribution of measured drop sizes with the
normal and beta distribution, constructed by means of standard deviation σ and mean value µ
and standard deviation and Sauter diameter d32, respectively, of the measured data. The setup
is described in [5] for the pH 13 case. The measurements are taken after 60 minutes at constant
stirrer speed of (a) 400 rpm and (b) 550 rpm. The maximum diameter in the definition of the beta
distribution is 1200 µm .

The choice of dmax indeed influences the quality of the approximation. The higher the
upper bound the less it disturbs the distribution in the range of interest. However in
this case that the distribution concentrates in the lower range a large dmax leads to very
small values of B(p, q) which is numerically problematic. Therefore the used algorithm
suggests adapt the upper bound if B(p, q) gets close to machine precision.
Having determined the parameters of the density function (7) one can compute the
moments up to an arbitrary order using expression (8). Then the corresponding initial
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weights and abscissae can be computed using the PD-algorithm described e.g. in [15,
17].
We will use starting and boundary values that change in time but which are independent
of the spatial variables. An extension to multivariate, e.g. for inlet and outlet, or smoothly
varying in space boundary values is straight forward.

3 The FASTEST 3D/MATLAB Interface

The coupling between the flow solver FASTEST 3D and the MATLAB control unit is
realised in three steps:

• Initialisation of a new control setup out of MATLAB.

• Starting the MATLAB control unit out of FASTEST 3D based on the data at the
current time step (e.g. Sauter diameter, velocity, turbulent energy).

• The control unit sets the input data (stirrer speed) for the next time step.

Thus, a single input/multiple output control system is designed which is illustrated in
Figure 3.

Figure 3: Design of the FASTEST 3D/MATLAB interface

3.1 Initialisation

A new calculation of FASTEST 3D can be started out of MATLAB using a script, let’s
say newCalc.m. At this point all initial values for a new flow computation are set. Since
the mesh is blockstructured, the user can choose the number of the block to define the
region which should be controlled. Also all input parameters, which are set in the id-
file of FASTEST-3D like for instance the rotational speed of the stirrer ω0 in first time
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step, are defined at this stage. Additionally the initial values for the Sauter diameter d0
32

and standard deviation σ0 are saved in .mat format since MATLAB is closed afterwards.
As a last step the user decides between an open loop-calculation and a closed loop-
calculation. In the case of open loop-calculation the value for the rotational speed at
every time step is set by a special subfunction. In the other case the value computed by
means of control algorithms at every time step.

3.2 Flow Solver

During the computation the basic functionality of FasCon is the initiation of a MATLAB
programme, i.e. dsController.m, to compute a future control input by means of actual
data, which is then fed back to FASTEST 3D for the next time step. The data is provided
by FasCon in ASCII format as well as the current time step. The control algorithm is
specified and implemented within dsController.m and related subfunctions.
FasCon is a Fortran routine located in the source code function funcusr.F and executed
before every time step or at a specified position in the multigrid cycle of the current
time step. The parameters in FasCon are listed in Table 2 and have to be set in ac-
cordance to the control method defined in dsController.m. For simple PID and other
low level controllers toggles are foreseen that allow the complete problem definition in
FasCon. The call of MATLAB routines out of Fortran is realised by the help of the MAT-
LAB Engine (function name engOpen), which operates by running in the background as
an independent process. The following code extract shows, how the MATLAB function
dsController.m is executed out of Fortran code:

integer*8 engOpen

integer status

logical control

control = .TRUE.

if (control) then

ep = engOpen(’matlab ’)

if (ep .eq. 0) then

write(6,*) ’Can’’t start MATLAB engine’

stop

endif

if(engEvalString(ep,’cd ~/../dsController’).ne.0)then

write(6,*) ’engEvalString failed’

stop

endif

status = engClose(ep)

endif
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Parameter Values Description
blockNo∗ 1,2,...,#Blocks Specifies the region for the output according

to the blockstructure of the given grid
modControl 1,2,...,#time steps Frequency of the Control unit

(modControl=1 means the Control unit is executed
at every time step)

dataVar∗ u, v, w, p, k,e,m0,m1,... Variable values for the output
timePoints 0,1,2,3,... Additional datasets to the current time step
intermediate 0,1 Toggle for an intermediate output
VCycNo 1,2,..., #MG iterations Specifies the inner iteration for data extraction

Table 2: Parameters for the output definition. The ∗ indicates possible multiple definitions

3.3 Control Unit in MATLAB

After calling the control unit in MATLAB the time step and the FASTEST output are read
from ASCII files by the MATLAB routine dsController.m. A special flag in the MATLAB
code allows the usage of different control algorithms. The result of the control is a new
rotational speed of the stirrer which is fed back to FASTEST 3D via an input file for the
next time step.

4 Optimal Control of the Dispersion

The control is designed to consider only the standard deviation and the Sauter diameter
as a measure for the average drop diameter instead of the whole PSD. These quantities
are of main importance in practice and are investigated also in the experimental setup,
c.f. [5]. The Sauter diameter and the standard deviation,

d32 =
m3

m2

and σ2 =
m2

m0

− m2
1

m2
0

,

respectively, can be derived directly from the first four moments. The input for the control
system is given by the stirrer speed ω.
Thus, a general form for the cost functional of the control reads

J(α,β)(d32, σ
2, ω) = |||d32(ω)− d∗32|||+ α||σ2(ω)||+ β|ω|.

Here d∗32 denotes the aspired state and α, β are weight parameters. Minimizing J , sub-
ject to the system dynamics given e.g. by equations (1a)-(1c) is equivalent to driving the
system to an aspired state while minimizing the standard deviation of the PSD and the
input. The norms used have to be specified with respect to the specific control problem.
Since it is to costly to solve the control problem for the full model, one has to call on
model reduction techniques. A possible approach is to drop the spatial dependencies
of d32 and σ by using the average value and approximate the dynamics by a continuous
linear state space model

ẋ(t) = Ax(t) +Bω(t) (11a)[
d32(t)
σ(t)

]
= Cx(t) +Dω(t) (11b)

Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

639



Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

D = 0.15m Diameter of the tank
d = 0.05m Diameter of the stirrer
H = 0.1m Height of the tank
h = 0.05m Height of the Stirrer

Figure 4: Geometrical parameters

with t ranging in the simulation interval. The problem specific matrices A,B,C,D can
be obtained by identification techniques as described e.g. in [11]. Note that the state
x(t) is a purely artificial construct by the identification algorithm.
Given an identified model (11) common algorithm for optimal and robust feedback con-
trol apply, c.f. [21, 25].

5 Implementation of a Control Design

The presented control design aims at the control of the PSD via an identified model.
Thereto several simulations with varying stirrer velocity as the input were run to generate
a set data and to identify a linear state space model. Then controllers and regulators
can be computed for the identified model. Depending on the quality of the model, the
identified controller may then also perform in the full-scale simulation.

5.1 Setup

For the simulations of a liquid/liquid dispersion a Rushton turbine filled by 90% water
and 10% toluene was chosen. The main parameters of the geometrical dimensions of
the setup are summarised in Figure 4.
Furthermore, the stirrer system contains 6 blades and the the tank is equipped with
4 baffles. The computations were carried out for a half model of the stirrer, applying
periodical boundary conditions at the symmetry plane and using a blockstructured hex-
aedron finite volumes grid with about 1.6 million cells.
The physical properties of the involved fluids are depicted in Table 3

ρ ν φ σ

Water 1000 kg
m3 10−6m2

s 0.9
32 · 10−3N

m

Toluene 866 kg
m3 0.63 · 10−6m2

s 0.1

Table 3: Physical properties of water and toluene

The basic stirring regime was set to a stirrer speed of ω0 := 25 rad
s

which corresponds to
approximately 239 revolutions per minute. The Reynolds number Re ∼ 105 is calculated
using the stirrer diameter, the velocity of the stirrer tip for ω0 = 25 rad

s
= 3.98 rounds per

second and the viscosity of the water.
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We gave 1 second simulation time to accelerate the stirrer from the zero state to ω0 and
then started computing the Sauter diameter and the variance of the dispersion while
varying the impeller speed ω smoothly by ±20%.
The PBE is solved using the DQMOM, i.e. equations (5) are numerically integrated
to obtain weights and abscissae where the moments can be extracted from. To save
computational time only a segment of the tank, covering the space between two blades,
was considered for the PBE, c.f. Figure 5.

Figure 5: Illustration of the domain where the PBE is considered

To start the calculation one has to provide initial values for the weights wα and abscissae
ξα, α = 1, . . . , N . Thereto we compute the first 2N moments m0, ...,m2N−1 of a Beta-
distribution fitting a prescribed Sauter diameter d32,0, standard deviation σ0 and volume
fraction φ, as described in section 2.5. The initial values for the wα and ξα are then
conceived from the moments by means of the PD-Algorithm, see e.g. [15].
The initial values mark the initial state of the simulated PSD can be set arbitrarily, in
particular because the system is far away from the stationary state, which is expected
after several minutes, depending on the models, c.f. [5]. Extrapolating experimental
findings by [5] we set the initial values as shown in Table 4.

d32,0 = 505µm Initial Sauter diameter
σ0 = 102µm Initial standard deviation
φ = 0.1 Dispersed volume fraction

Table 4: Initial values for the simulation

According to [17] the main flow in the considered region is in radial direction. Thus
we set uniform Dirichlet conditions at the boundary facing the center and zero gradient
conditions elsewhere. The Dirichlet values for the weights and abscissae was set to be
the initial values or the average values of the preceeding time step.
In this investigation the number of quadrature points was set to N = 2. Having com-
puted w1, w2, ξ1, ξ2 for the current time step the actual moments, the Sauter diameter
and deviation of the PSD are obtained by the algebraical relations

mk =
2∑

α=1

wiξ
k
α, d32 =

m3

m2

and σ2 =
m2

m0

− m2
1

m2
0

,

respectively.
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5.2 Data Generation and Identification of a State Space Model

Following the general approach of defining a set of test (input) functions and computing
and recording their response, the FASTEST-3D/MATLAB coupling described in Section
3 can also be used to design a work cycle for data generation for identification.
Thereto in every time step the MATLAB routine dsController.m is set up to simply store
the output in a .mat-file and return the actual value of the testfunction to the solver as
the new stirrerspeed rather than running a control algorithm.
For our tests we chose a set of sine functions that are periodic on the interval [0, 0.3] with
varying wave number and a fixed amplitude of magnitude 5. To use the functions directly
as the solver input they were shifted by ω0. Thus testfunction ωk, k = 0, 1, 2, 3, . . . , reads

ωk = 5 · sin(
kπt

0.3
) + 25, t ∈ [0, 0.1].

For the simulation ωk is evaluated at the current discrete time level. The first 4 testfunc-
tions are illustrated in Figure 6.

0 0.05 0.1

25

30

t

 

 

ω(k=0)
ω(k=1)
ω(k=2)
ω(k=3)

Figure 6: Illustration of the first 4 test functions

Running the simulation for the first 9 testfunctions ωk, we obtained vectors (ωk, dk32, σ
k),

containing the values of ωk, and their responses dk32 and σk at all time steps the solve
took to resolve the simulation interval.
Because of the clicking mesh technique, the time step size is restricted to discrete
points, depending on the actual velocity and the number of cells the stirrer is moving,
c.f. Section 2.1. As a result the values of the time steps in the described series differs
from testfunction to testfunction. This issue was solved by linear interpolation of the
data pairs to equidistant points at the interval [0, tend] in order to make the data suitable
for discrete time identification.
The obtained data sets were imported to the MATLAB System Identification Toolbox [23]
to describe a time-discrete linear time-invariant dynamical system of the form

xn+1 = Axn +Bωn[
d32,n

σn

]
= Cxn +Dωn

with the system output = [d32, σ]T and the input data ω. The basic idea of identification is
to fit a linear time invariant model to given input/output data, and use the model instead
of the full scale control design depicted in Figure 3.
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The MATLAB Identification Toolbox provides a vast variety of algorithms for identifi-
cation. We used the idss algorithm to extract the matrices A ∈ Rn,n, B ∈ Rn,1, C ∈
R2,n, D ∈ R2,1 which can be used for optimal control. Here n denotes the dimension of
the artificial state x.

5.3 LQR State Feedback Control

Considering the identified time discrete system and an aspired sauter diameter sampled
at discrete points, the optimisation problem may be formulated as: Minimize

J =
∑
n

(d32,n − d∗32,n)2 + ασ2
n + βω2

n (12a)

subject to

xn+1 = Axn +Bωn (12b)[
d32,n

σn

]
= Cxn +Dωn. (12c)

For this control system one can call on the theory for linear quadratic regulation, [25].
Thus, having computed by the MATLAB function dlqry.m the regulator K that minimizes

J0 =
∑
n

[
d32,n σn

] [1 0
0 α

] [
d32,n

σn

]
+ βω2

n → min,

the optimal control ω∗n for (12) is given via

ω∗n = −K(xn − x̄n) + ω̄n.

Here xn is the state of the closed-loop system

xn+1 = (A−BK)xn +B(Kx̄n + ω̄n)[
d32,n

σn

]
= (C −DK)xn +D(Kx̄n + ω̄n).

and for the quantities x̄n and ω̄n one has to solve the equations

Ax̄n +Bω̄n = 0 and
[
d∗32,n

0

]
= Cx̄n +Dωn. (13)

Note that in the given case of one input and two outputs, equations (13) have a solution
only for specific choices of the reference outputs.

5.4 Discussion

As illustrated in Figure 7 the test functions showed no detectable response in the chosen
simulation interval. For both the Sauter diameter and the standard deviation there are
no tendencies to observe and the slight changes are indefinite and possibly caused by
numerical errors.
A reason for this outcome may be fact that after only one second of stirring up the
resting medium, the flow in the stirrer is still developing. Hence unsteady effects of the
flow field superimpose the impact of the control. Thus the identified model holds to little
information on the system and the computed LQR controller had no influence on the
PSD.
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Figure 7: Illustration of the response of the first 4 test functions defined in Section 5.2

6 Conclusion and Outlook

The key result of this work is the efficient coupling of the flow solver FASTEST 3D with
MATLAB. In the first place this makes the multiple control algorithms of the MATLAB
toolboxes available for simulation of control designs including the flow solver.
In addition, the coupling can be used for the design of numerical experiments. As pre-
sented for the identification example one can use the functionality of MATLAB to define
a series of simulations and use the interface to steer the solver and to manage the data.
The interface is also suitable for postprocessing of the simulation results. For example
the visualisation of the flow variables, using the open source tool PARAVIEW [16], was
successfully implemented within this investigation.
The simulations of the proposed control design showed the need for further analysis of
the problem. Also the algorithm implemented for the solution of the PBE proved to be nu-
merically problematic because of the small values of the abscissae. A nondimensional
formulation as discussed e.g. in [20] may put the things right.
Regarding the control a next step is the synthesis of suitable and robust controllers, both
from measured data and from the underlying mathematical model.
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Nomenclature

Symbol Description
A,B,C,D State space matrices
c1,b, c2,b Model parameters
c1,c, c2,c Model parameters

d Particle diameter
d32 Sauter diameter
k Turb. kinetic energy
m Number of daughter drops
mk k-th moment
n Number density function
nb Approximation by β-distr.
N #Nodes for quadrature
Re Reynolds number
s Interfacial tension
S Source term of PBE
t Time
T ∗ Turbulent stress tensor
v Velocity

Symbol Description
w Weight
α, β Weighting constants
Γt Turbulent diffusion
ε Turbulent dissipation rate
ζ Weighted abscissa
µ Dynamic viscosity
ν Kinematic viscosity
ξ Abscissa
ρ Density
σ Standard derivation
φ Volume fraction
ω Stirrer speed

CFD Computational fluid dynamics
FVM Finite volume method
ILU Incomplete lower-upper
LQR Linear-quadratic regulator
PBE Population balance equation
PSD Particle size distribution
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PhD Thesis, TU Darmstadt (2002).

[20] L.F.L.R. Silva, R.B. Damian & P.L.C. Lage, Comput. Chem. Eng. 32 (2008) 2933-2945.

[21] S. Skogestad & I. Postlethwaite, Multivariable feedback control. Analysis and design. Chich-
ester: Wiley (1997).

[22] M. Srour, V.G. Gomes, I. Altarawneh & J. Romagnoli, Chem. Eng. Sci. 64 (2009) 2076-
2087.

[23] System Identification Toolbox 7 - User’s Guide, The MathWorks (March 2010).

[24] D.L. Wright, R. McGraw & D.E. Rosner, J. Colloid Interface Sci. 236 (2001) 242-251.

[25] K. Zhou, J.C. Doyle & K. Glover, Robust and optimal control. Prentice Hall (1996).

Proc. 4th International Conference on Population Balance Modelling
September 15-17 2010, Berlin, Germany

646


